titanium oxide and 2 per cent' sulphuric acidand 63 per cent water, are slowly added to a solution containing 1050 pounds of barium sulphide, held in a large cylindrical tank, provided with a rotary agitation :capable of producing rapid agitation. The mass isthus v rapidly agitated, and the 2 per cent of sulphuric acid contained in the titanium acid cake reacts with a small portion of the barium sulphide. This reaction may be represented by the following equation TiO H 80 The free sulphuric acid of the titanium acid cake is neutralized by thebarium sul-' phide solution, forming barium sulphate and hydrogen sulphide, as indicated by the above equation. As the sulphuric acid is present only in a small percentage, the major porltiion of the barium sulphide remains as suc very fine colloidal suspension. The barium sulphate produced is also very fine, and the presence of this. very fine barium sulphate in suspension, and also of the very fine colloidal titanium oxide, is believed to be the explanation of the great improvement in the properties of the finished lithopone.
For a review published in 2023 in the journal Environmental Pollution, researchers examined E171 as a possible factor promoting obesity-related metabolic disorders. Because gut microbiota play an important role in immune function maintenance and development, and because titanium dioxide as a food additive has been shown to alter gut microbiota, researchers wanted to review “the dysregulations along the gut microbiota-immune system axis after oral TiO2 exposure compared to those reported in obese or diabetic patients, and to highlight potential mechanisms by which foodborne TiO2 nanoparticles may increase the susceptibility to develop obesity-related metabolic disorders.” The study authors discovered recurrent changes in the gut microbiota composition when exposed to titanium dioxide nanoparticles, with an imbalance of intestinal symbiotic microbiota. These changes and imbalances were also reported and played a role in the development of obesity, the authors wrote. This highlights “foodborne TiO2 nanoparticles as an endocrine disruptor-like chemical promoting obesity-related disorders,” the authors concluded.
Micronized titanium dioxide doesn’t penetrate skin so there’s no need to be concerned about it getting into your body. Even when titanium dioxide nanoparticles are used, the molecular size of the substance used to coat the nanoparticles is large enough to prevent them from penetrating beyond the uppermost layers of skin. This means you’re getting the sun protection titanium dioxide provides with no risk of it causing harm to skin or your body. The coating process improves application, enhances sun protection, and prevents the titanium dioxide from interacting with other ingredients in the presence of sunlight, thus enhancing its stability. It not only makes this ingredient much more pleasant to use for sunscreen, but also improves efficacy and eliminates safety concerns. Common examples of ingredients used to coat titanium dioxide are alumina, dimethicone, silica, and trimethoxy capryl silane.