Titanium dioxide is the most widely used whitening pigment in the world and has been linked to adverse health effects, particularly genotoxicity and intestinal inflammation. It is applied as food coloring and a whitening agent to a wide variety of foods, including chewing gum, cakes, candies, breads and ice cream.
JECFA previously assessed titanium dioxide at its 13th meeting, at which time the expert committee assigned a “not specified” ADI for the additive due to an absence of significant absorption and a lack of toxicological effects in the available experimental animal and human studies. Since its original evaluation by JECFA, titanium dioxide has become a public point of contention, with its ban being introduced (and then subsequently withdrawn) in California legislation in 2023, a legal battle playing out in the EU over the additive’s ban and classification as a carcinogen in 2022, and the European Food Safety Authority (EFSA) calling titanium dioxide unsafe. However, supporters of titanium dioxide say that claims about its dangers are founded in unreliable studies, and some recent research has supported its safety as a food additive.
The realization of neuromorphic resistive memory in TiO2 thin films (Strukov et al., 2008) marked an important milestone in the search for bio-inspired technologies (Chua and Kang, 1976). Many research proposals urged a focus on memristivity as the common feature of two electrical models: (i) electromigration of point defects in titanium oxide systems (Baiatu et al., 1990; Jameson et al., 2007) and (ii) voltage-gated ionic channels in the membranes of biological neurons (Hodgkin and Huxley, 1952). In this regard, memristors functionally mimic the synaptic plasticity of biological neurons, and thus can be implemented in artificial and hybrid neural networks. This includes a new paradigm of future computing systems (Zidan, 2018) and biocompatible electronics such as biointerfaces and biohybrid systems (Chiolerio et al., 2017).